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A REFINED MATHEMATICAL MODEL OF AN ALMOST IDEAL 

BIOCHEMICAL RELAXATION OSCILLATOR BASED ON THE 

COVALENT MODIFICATION OF AN ENZYME 

I. I. Goryanin, E. E. Sel'kov, 
and K. I. Serdyuk 

UDC 577.~S2 

A refined mathematical model (N2) was developed and analyzed; the model describes 
EIA.B) 

the generation of relaxation aute-oscillations in the open reaction -s,-s,- in 
which the enzyme E(A, B) is covalently modified by the modifying enzymes EA and EE 
in such a way that the active A form of enzyme is converted to the inactive B fere 
by enzyme EA' and the B form in reactivated to the A form by enzyme EE' Tne 1':2 
model assumes that the substrate Sl and the product S2 competitively inhibit the 
inactivating enzyme EA' The system described by!'::, like the previo'_,sly described 
phenomenological model M1 (E. E. Sel'kov and I. I. Goryanin, Mol. Biol., 20, 1550-
1562 (1986)), was shown to be able to undergo reiaxation auto-oscillation~ ASyTIp-
totic equations for the quasi-sta~ionary rate of the reaction S} ~ S= were de~ived, 
taking all enzyme-liganc complexes of enzymes E, EA' and EB into consideration, 
and asymptotic expressions for the period and amplitude of the relaxation oscilla-
tions were also deduced. Good qualitative and quantitative agreement was demon-
strated between experimentally measured oscillation periods for the M1 and M2 
models and values obtained by numerical integration of the M2 model in conditions 
in which the total enzyme concentration E(A, B) was Significantly greater than the 
total concentrations of enzymes EA and EB' 

Covalent modification of enzymes [1-6] is a significantly more efficient way of cor::.~:::~­
ling enzyme activity than methods based on equilibrium conformational transitions [7-10]. 
This explains the fact that the most important key reactions in cell metabolism are regulated 
by covalent enzyme modification [1-6J. Sel'kov and Goryanin [11] investigated a mathema:.ical 
model of the flow-through reaction ~ S: ~ S2 ~, which is catalyzed by the enzyme E(A, B), 
which is in tUrn subject to covalent modification by enzymes EA and EB according to sch~e 
(1) . 

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 
Pushchino, ~10SCO"i Region 142292. Translated from Molekulyarnaya BiologiY3, Vol. 26, No. ~ 
pp. 404-417, March-April, 1992. Original article submitted October 17, 1991. 
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(1) 

B); S1 - schene (1), A is the active form and B is the inactive form of enzyme 
and S: are the substrate and product respectively of the reaction 51 ~ , and are also inhi-
bitors 0: the enzyme EA, inactivating the active A form; EB is the modi-

.:,::r;,Z)T3e .. 

_s of a mathematical model of system (1) showed that 
be a~ a~nost ideal generator of relaxation oscillations, whose 

in certain conditions it can 
and of oscil-

la=ic~ :an be calculated analytically, 

~,= ?CSS of analytically calculating the parameters of the 
S::S-::2::S of (1) opens wide vistas in the theoretical analysis of the mechanisms 

in 
which 

cel_ =~=abc_ism is in time [12, 13], which up to now has rested 
f:.c1.:.::': ::;;"-:1e1:" " calculations [14]. 5el'kov and Goryanin [11] derived an 
no=ica_ wcdel of system (1) that permits analytical calculations of its 
,:c .~" .arried out, and the derivation was based on a series of 

ical expressions for the rates of the reactions 
were used, However, the conditions required for rate 

interactions between the enzymes and their ligand remained l.:n:"r.ow'11. 

:his report we describe a kinetic model of system (1), 
s'~~e complexes, and we de:ermine the conditions 
wodel : approximates the preViously described 

into account all pos-
in which the mathematical 

~~~~~a.~ model [11j. 

KINETIC MODEL 
TI:e the three enzymes 

i'iowever, 

scheme of all possible interactions of ligands with 
EB in scheme (1) is very complex, and the system can 
if certain assumptions are made about the mechanisms 

be analyzed numeri-
or the interactions 

betwee:: :he and the enzy~es, and if large differences in the concentrations 0: the 
'.ra:-' com?onen-::s and the rates of the elementary stages are used, Le., as usually occur in 
reo_ :chemical systems, the mathematical description of system (1) becomes considerably 
simpler, and in particular conditions allows analytical to be carried out. 
For :~e purposes of deducing a mathematical model of system (1 we use :he following simpli-

on the mechanisms of action of enzymes E(A, B), and EB, and on the 
nature of the interactions of the ligands with these enz}TIes. 

he assume that enzyme E(A, B) has two different binding centers: a catalytiC center to 
which :he substrate 31 attaches, and an allosteric center whose modification by the modify-

er.z:.;nes EA and EB leads to cyclical interconversion of the two forms, Le., A 1. B. 
Events in the center of forms A and B are independent of attachment of enzymes EA 
and the forms themselves have different affinities for 31 a~d different catalytic 
efficiencies. The mechanism of action of forms A and B can be described as a Michaelis-
Henter. r::echanism: 

k., 
SI+A,F,SIA-A+S2. 

,4?s k~+-.., 
S,+BFS,B-'B+S, ., 

where I 
, ~2' and k+2 are the rate constants of the stages. 

he further propose that form B has a low efficiency: 

(2) 

(3) 

(4) 
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Supporting the of e\-e.nts in the catalytic and allosteric centers, mechanism en 
holds both for form and for its complexes ~ith enzyme EA, and for complexes ef 
EA with the allosteric inhibitors of this enz}~e Sl and S2' Similarly, mechanism (3) also 
holds for the complex ef the B fcrr.l ~ith EB' supporting this independence, the modi-

enzymes act in identical \,aY5 on forms A and B free and bound with Sl: 

d.;.\ 4 ... , 

A'+EA~A'EA "':E .. +B', -, 
h~ I h', ' 

B'+ Ea=? B'Es --E8 + A', 
h".-! 

(5) 

(6) 

where a±l' btl' ~2' and b+z 
quently, a prime (') is used 
centrations of such mixtures are given 

constants of the early stages. Here and subse-
mixtures of free and S1-bound molecules. The con-

by the sums: 

A'=A+S,A. =: AE .. -'-S,AE A, (7) 
B'=B+S,B. B'E6 BEB+S,BE B· 

We also assume that substra~e S: and product S2 ef the major reaction S1 ~ S2 (equa-
tions 2, 3) are allosteric inhibitors ef the modifying enzyme EA, are competitive in rela-
tion to each other, and are non-cocpetitive in relation to molecules of A and S1A attached 
to the catalytic center of EA' Tr"~ type of inhibition is described by a system of chemical 
equations: 

S:+ 

1_, 
Sl + A'E .. :i A'EAS:. 

1.1 

(8) 

Here, and ~±2 are rate constants, and the concentration of the mixture is determined by 
the sums: 

A'E •. =A.E A +SAEA. A'EAS l = 
= . .o.E AS:+S,AEAS2, 

Syst:.em (1) is open .. ,-i 1:h respe:=:::: t.o S 1 and S 2 and closed ~i th respect to all ferr.1s of 
E(A, B), EA, and The exchange ~I Sand 52 with the medium occurs with rates: 

(9) 

( 1 C~} 

where VI' is the rate of Sl input, V: is the rate of inpul: at 5 0, v 2 is the rate of S2 
output, V2 is the rate of 52 inpu:::, and kl and k2 are the exchange rate constants. 

The closed nature of system (1) fer the enzymes means that the total concentration e: 
enz:ymes 

is constant. Here, Eo, EAo' and 
For the purposes of deducing the 
that the reactions of system (1) 
ture and pH. 

E,=A'-B'+ A'EA +B'Es+A'EpS,+A'EAS,. 
=:::. - A'EA ~ A'F "Sl..!.. A'E AS2 • 

ES:=::B-B'E B 

(~ 1) 
(i2) 
(13) 

are the total concentrations of E(A, , ,and EE' 
mathematical model, we will, as previously [1 ,propOSE 
occur in a perfectly mixed medium with controlled temoer&-

>fATHEMATICAL MODEL 
Deduction of a mathematical model for system (1) involves the proposition that the 

system contains a of concen~rations described by the conditions: 



.~_s s:::·.~ an analysis of the extensive experimental data (more tha:1 6000 publications), 
ca:::::eci CIJ.7. using the DBEMP enzymes and metabolic pathways data ban:", [IS, 16 J, this kind of 

_s t~~ical for cells in vivo. In fact, the DBEMP data sho~ that the mean concen 
~::z~::n 0: intermediates in cellular metabolism, taken as the mean of the Michaelis 
cons~an7. for intermediates, is -3.6 ± 1.1, and the mean enzyme and modifying enzyme 
('JZ:::CU5 t:;?es) concentrations are -7.4 ± 1.3 and -8 ± 0.8 respecti:.rely. The low concen-
~::a~ions of enzymes ECA, B), EA, and in relation to Sl and Sz allows the analysis to be 
s simplified: in this case, the concentrations of S and change much more 
slo..-2.: t.:-tan the concentration of all enzyme forms. Thus, (1) rapidly establishes a 
quasi-stat. state in which static conditions are established fo:: all enzyme forms, but 
not. :0:: S: and S2' In this state, the relationships between the quasi-stationary concentra-
tions of a_I enzyme molecules (a total of 16 different types) can be determined by four 
linea:: -eactions (Eqs. 1S-18) and one non-linear reaction (Eq. 19). In reaction (19), vA and 
')B are quasi-stationary rates of covalent modification. 

k~1 SI 

A S,A, 

"'-1 " 'f.-Z 

if;, $7 

B -- s,B, ---k~! ~,~:z 

l+: S, l.zSz 

17",8 ' 

£8 B'EB} 
!J_I~ b,.z 

AI 

Tte rate of formation of product Sz by enzyme form A is 
of of all types of molecule carrying Sl: 

w 

Simi!arly, the rate of formation of S2 by form B is given by: 

w' K..I.Z(SIB+SIBEe). 
The rate of conversion A ~ B is: 

and the rate of conversion B ~ A is: 

(15) 

(16) 

(18) 

(19) 

by the sum of the rates 

(20) 

(21) 

(22) 

(23) 

The concentrations of the enzyme-substrate complexes are determined using Eqs. (15) 
and (16): 

(24, 25) 

where 
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K",=(k_1 + k+2)1 k+l' 
K'm=(k~1 + k'-r2)/k'+1 

are the Michaelis constants for Sl of forms A and B. 

(26) 
(:27) 

The independence of the catalytic and allosteric centers allows similar equations for 
the concentrations of the remaining complexes of A and B carrying Sl in the active center 
to be written: 

From scheme (17) we find: 

where 
KA =(a_1 +a+2)lo+1 

is the Michaelis constant for EA- Considering Eqs. (28)-(30), this 

• (24) and (33) into the sum (20) gives 

w == k ~ A 51 . k E S1 
.~ r' S -r- +2 A 0 F . S 

r..m + 1 I\.m -:- 1 

A 

Following the same ~r!~ml~ for reaction (18), we obtain 

where 

For calculating rates VA and VB 

A 

reactions (17) and (18), we find 

A 
=EAO------~--------~ 

K· -
d - { . 

~l 

(28) 

(29) 

(30 ) 

(31) 

(35 ) 

(37) 

are the inhibition constants of enz~~e EA and the Michaelis constant of enzyme EB for E'. 
From reaction (19), it follows that-

which, considering Eqs. (22). (23), (36), and (37). 
centrations A' and B': 

--~.-

K'I3-r-B 
where 
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(41) 

the relationship between the con-

(42) 



s the relati'le ma;(1.mw:t rate for 

In [11J, an important role in the 
function: 

r G 

eml 

is of syste.c : 1) was assigned to the ratio 

Here, . (31) and (37), it is easy to obtain the ratio: 

3 

(43) 

(44) 

(45) 

which is the ratio of concentrations of EA enzyme-substrate complexes to the concentrations 
of enz:JDe-substrate complexes. This ratio in the prese~t model is equivalent to the 
ratio in Eq. (44) from the previously model ~L •• Considering Eqs. (33) and (37), 
( 11) for the total concentration form: 

(46) 

To s further analysis. we introduce dimensicn:ass variables and parameters: 

S'J A 
cr" = ---. 

- Ki2 
IX=::-

Eo' 

00+00, 
IV 

00=-,-,...-. 00 
1C+2 e.o 

IV 
=--­- , 

A:~: =-0 

Kp, k,.'J 
"3 = Eo' , C=--

K+2 ' 

where t is the time dime~sion. Calculating the substit~ticns in 
SyS::2~ (1) i!1 dime!1sicnless time '\ is described by the f0~ 
.equat:ions: 

where 

*K is the Greek letter kappa. 

"" vIm -1\:1 crl -v, 
de 

1::2 at 

v'-"w-w', 

----;-----:- = O. 

(47) 

. (47), the behav ior of 
system of mass balance 

(48) 
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Fig. 1. Relaxation auto-oscillation of the dimen-
sionless substrate concentration of substrate 
S~(Ol) and product (02) in reaction (1), , is 
dimensionless time. Plots were obtained by inte-

of model (49) by a modified Colahan 
method for the solution of rigid systems [17, 
18]. Parameter values were: E = 10- 3 , E2 = 
9.01·10-~, £3 1.0·10-4~ Kl = 0, v 1m = 0.5, KA = 
"- - I 1 0- 5 r - 3 \J - l' and ') - 1 1 ~B - Km - Km •. , - , 2m -, '2 - . . 

Here, 01' 02' 0., and E are the dimensionless concentrations of S~, S2, AI, and E'; \" :"5 
the dimensionless rate of conversion Sl 7 S2 catalyzed by enzyme E(A, B); wand w' are ~~a­
logous parameters for forms A and B separately; v1m ~~d v are the maximum of S. a~c 

S2 input; K1 and K2 are rate constants for the metabolism and 52; Km' Km' KA, and K5 
are dimensionless Michaelis constants for A, B, EA> and E is the relative activity of 
form B; EA and EB are the relative concentrations of the modifying enzy~es EA and EB; and £= 

is the relative inhibition constant of EA by 52' If we consider that in model (48) :he re:a-
tive concentrations of enzymes and EB can be made very small (EA, EB 7 0), then it tru~es 
the form: 

dt 
where 

v C'J 0.-£ C'l (l 0:), 
K",'1"C'j K m+Cll 

1-0. r 0: =0. 
"",'1"1-0: (lC A +0:)(I+C'1+C'2) 

Finally, neglecting the low activity of form B (E 7 0) leads (Eq. (49)) to the previously 
studied phenomenological model [11]. 

APPROXIMATION EQUATIONS FOR THE 

p~~PLITUDES OF RELAXATION OSCILLATIONS 

·We will consider model (49) in conditions in which parameters Km, KA, KB> £, and E2 are 
small. In these conditions this model ca~ almost ideal relaxation of the oscilla-
tion of variable 01 and square-wave oscillations in the fast variable 02 (Fig. 1). Using 
the limiting transition £2 7 0, we can model (49) to a confluent first order model witn 
a discontinuous right hand side: 

(50) 

in which Veal) is the quasi-stationary value of the rate of reaction 51 ~ S=, which sat is 
fies the system of algebraic equations: 
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A B D' ;) 
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'0 ~ "rr C---
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I 

O,/J I 
Ie 
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1 

I \\ 
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I \ 

0,2 O.l~ \ 
\ 

h' .....,.- a I 
}Jo 

0 0,2 0,'1 0,6 0,13 1,0 !,l 0 0,2 0,4 116 0,8 1.0 /,Z 

Fig. 2. (A) Quasi-stationary hysteretic relationsr.ip 
between the dimensionless rate of reaction Sl ~ S2(~) 
and the dimensionless concentration of substrate 
SI(a 1 ) (bold line) and the limit cycle C, embracing the 
hysteretic part of the plot of ~(al) (thin closed 
curve). Arrows show the direction of changes in t~e 
L, 0 is the unstable stationary state, the rate of the 
source of substrate (bold line). The behavior of .~( °1 ) 

was determined by numerical integration of model (49) 
by the Colahan method [17, 18J. Parameters had the 
same values as in Fig. 1. (B) Approximation of the 
limit cycle C by the rectangle aa'bb'. The non-linear 
parts of entry characteristic ~(al) (bold line) are 
replaced by the chords b'a and ba' (thin lines). a and 
b are break points, and a' and b ' are "slowing" pOir:ts, 
sections aa' and bb' are regions of slow movement, and 
sect~::ms b' a and a I b are regions of rapid movement. 

V~ __ O"..!.l_ 

[-a ex 

Km-r-[-a r (KA-a)(l-+-O"\ -+-0:!) 
0, 

v - K : 0": -'- vZ m = O. 

(51) 

Relaxation oscillations in model (SO) (Fig. 2), as in the original model (49), arise 
bec2~se of the hysteresis function veal)' Such oscillations in the phase plane of variables 
(~l' ~) cQr~espond to the discontinuous limit cycle C, show~ in Fig. 2 (cycle ab'ba'). This 
cycle C embraces the hysteretic part of the plot of veal) and has two regions of slow move-
ment (sections a'a and bb') and two regions where discontinuities occur from break points a 
(or b) to "slowing" points b' or a'. The amplitude and period of oscillation of the vari-
ables as we go around the cycle C are determined by the coordinates of the break points 
(a, b) and the "slowing" pOints (a', b ' ). In the general case these points cannot be deter-
mined analytically. However, this type of determination can be carried out when KA and KB 
are s:oall. 

using the two previously proposed approximate solutions [11J of the second Eq. (51), 
we get 

a == qlC.;, ,for -a ~ 0, (52) 
l+ 1C B-q 

1 -+- 1C B - ( 1 - 1C A )q 
a.= fora.~l, 

- 1- (1 + ]( A)q 
(53) 

where 
q=(ol+oz+I)/r 
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is the ratio function (4~), and we obtain a solution for system (51). This requires an 
equation equivalent to system (51) to be solved, for each case separately: 

and 

(l+GJ+GJXA . 0 
-...:...---:------''-'----- "2e G:: - v2me == 
r(l- K A) - 1 - G1 - G2 

(54) 

(55) 

for the asymptote a l ~ 0 and a l ~ 1 respectively. Here we use the designation of functions: 
(56-57) 

(58) 

(59) 

Solving the quadratics of Eqs. (54) and (55) relative to O 2 , and using the conditions 
of multiple roots for these equations, we obtain equations determining the abscissas of the 
extreme points a and b of the function V(Ol) . 2): 

2J 1< A ( K A + 1) . 
V "2e 

(60) 

(d) 

These equations cannot be solved relative to ala and alb, since K2e are the func-
tions 0 1 = O 2 or 0 1 = respectively (Eqs. (56)-(59». However, at values of Kffi anG 
K~, equations (60) and ) can be used, simultaneously with expressions (56)-(59), as ite~-
ation formulae for analytical or numerical calculation of the abscissas of ala and alb- In 
the 1 conditions Km ~ 0 and K~ ~ 0, as shown by _ (56)-(59), 

(E2) 

the right hand sides of (60) and (61) do not bridge with Oc and point values ala and alb' =r. 
another boundary Yw ~ 0 and km ~ 00. 

j: = 1. ji=O. )(2,= Kl, 

and the right hand s~aes of Eqs. (60) and (61) 
as found previously [1]. 

give the point values of o:a and alb, 

At low values of KJp KB, and Km, iteration of . (60) and (61) converge rapidly, so a 
first approximation is adequate for calculation of the Toots, having taken a null approxioa-
tion of the value: 

(64)-(65) 

obtained from Eqs. (60) and (61) at KA = KB = Km ~ € = O. However, with increases in KA a~c 
, iterations of Eqs. (6) and especially (61) converge poorly or not at all, and then so~e 

method must be used to improve the convergence of the iterations (for example, Aitke~!s 
'6 2 process [17J). In this case, the analytical expressions for ala and alb beco~e too labo-
rious and their use becomes inappropriate. If ala and alb are determined, the correspond~ng 
multiple values of O2 and v can be determined analytically using the equations: 

(66) 
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Va= K~cr20- v2mt', (68) 
iib= KZ,eJZb- V2m,' (69) 

The abscissas of the slowing paints a' and b' on the limit cycle C (Fig. 2, A) agree 
with ~he abscissa of the break points. Thus, using the values of ala a~d alb already found, 
we can use the quadr3tic Eqs. (54) and (55) respectively to calculate '.'alues of a 2 and the 
ordina~es of v~, and vb': 

Va'= K2t'cr2a,-v2mt', (72) 

\'b'= ICZ,eJ2b'-VZm", (73) 
where 

I 1 
Rb= v(v2n, -1 +!Cz,C,l -4RlCB IC 1,. 

Ra = y:(-vz..", +- ICA - !Cz,Cz)" -4lCz. (ICA(I +- eJla) +- vzm,C
1

, 

C, = 1 +eJla-T1C· ... Cz=rlC'B- I -eJ'b 

1C:"=I+!CA.lCa=I+!CB, 

The ~plitudes of oscillations of the variables are deteroined as the c~=ference between 
their extreme values: 

Aa. =U'a-G'h, 
/-\.0" ==Ci~.,,·-cr~:i. 

:\;:.= \',/"- \' a = K~~.\(')':. 

EQUATIONS FOR THE PERIOD OF RELAXATION OSCILLATIO~ 

(74 ) 

(75) 

(76) 
(77) 
(78) 

Approximating the region of slow movement on the limit cycle C (Fi s ' 2) with chords ab' 
and ba', we obtain expressions for the period of oscillation: 

'" I 1 1 
__ I 'I'.' 1.·alh-(:\1-Vl~)/Blls;-ralb+(A:-Vi""')/B2}B2 : 
'0 - .n < ~ 1 ! 

I l ala'" \ A, - VI"", )/B, J l ala'" (:\: - vJ,me )/B2 ' 
(79) 

where 

V-\' . 
11. 1_ B2 = a .: - K I, 

alb -a,,, 

At small values of KA, KB, and S2' Eq. (79) gives the period '0 with an error of a few 
percent (Table 1). 

In the important special case of an irreversible source of Sl' in which Kl = 0 approxi-
mating the regions of slow movement of characteristic Veal) with sectors v = va and v = Vb' . 
(cr'a~cr,~crlb) leads to a simpler equation for the period: 

_ _ Acr , Av 
'0 - (Vb' - Vlm)(Vl m - Va')' 

This equation is further simplified in the limiting conditions in ~hich KA. KB, Km ~ 0: 
1 

'O=----------~------
)(2(1+£ -Vlm)(Vl m - E)' 

Transforming to dimensional values, we obtain: 

(80) 

(81) 
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F 

where V 

TABLE 1. Comparison of the Extreme Points of the Variable 0 1 and 
the Period of Auto-Oscillation in Model (49) Obtained by Numerical 
Integration and by Analytical Calculation 

Value of i Numerical integration calculated by aSyr:Iptotic I Relative 
parameter! of model {49} E9,s. (64), (6:2), and (79J I error in 

O'lm:u I 0'1rT1I!'I I 'tON er 10 er,. :, I 'to ~ kz i , 

1.1 1.081 0.174 3.637 1.080 0.187 3.606 -0.8 
1.~ I. 158 0.316 3.342 1.156 0.339 3.~ -1.1 
1.3 1.224 0.45.1 3.093 1.221 0.467 3.049 -1.4 
1.4 1.280 0.563 2.880 1.276 0.576 2.831 -1.7 
1.5 1.328 0.658 2.695 1.324 0.671 2.641 -2.0 
1.6 1.371 0.7.1) 2.535 1.366 0.754 .... ~ .. (, 

";:"'at, _ -2.4 
1.7 104M 0.815 2.393 1.403 0.828 2.329 -2.7 
1.8 1.442 0.8S0 2.268 1.436 0.893 2. 19') -3.1 
1.9 1.472 0.938 2.156 1.465 0.951 :'083 -3.4 

Notes. Numerical integration of model (49) was carried out using 
the more detailed model (84) for calculation purposes. Integration 
was carried out using the Colahan method to the fourth order of 
precision [17, 18J with a step error of 10- s . Parameter values 
were: s = 10- 3 , S2 = 9.01.10- 4 , S3 = 1.0.10- 4 , Kl = 0, VIm = 0.5, 
KA = KB = Km = K~ = 1.0- 5 , r = 3, and v 2m = 1. 

EV.L.LUATION OF TIffi ERROR OF THE AS'I.'HPTOTIC EQUATIONS 

(82) 

(83) 

Control calculations were performed to evaluate the error with which the asymptotic 
Eqs. (76)-(79) estimate the amplitude and period of oscillation of the variables in model 
(49). For this purpose the hybrid model (49), including both differential and algebraic 
equations was replaced ~~th the following third-order model, whic~ is more suitable for 
integration: 

(84) 

da I-a a 
£--= 

j dl 1(B+ 1- a 

where 

Table 1 shows the extreme values of the variable 0 1 (Olmax and a1min) and the period of 
auto-oscillation 'toN, calculated by direct integration of model (84) at different values of 
parameter K2 • For comparison, Table 1 also shows values for ala' alb, and 'to calculated 
using the asymptotic Eqs. (60), (61), and (79). 

Comparison of these values shows that the asymptotic equations allow, at s, S2' Km, ~A' 
and KB « 1, to estimate the parameters of the auto-oscillation regime in system (84) with 
very low errOr levels (on the order of a few percent). 
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DISCUSSION 
~~is ~eport describes the development and analysis ~f mathematical model (49), which 

provices a more accurate of the auto-oscilla~ory regime in reaction (1), as com-
'"ith a 1:1 published phenomenological model [11]. The previous model [11] sug-

that the kinetics of action of the modifying enz:~es EA and EB could be described 
of (36) and (37), though the mechanisms of the interactions of and 

, required to satisfy these kinetics, were not identified. In the present 
paper, it is shown that the mechanism of elementary interactions of enzymes E, EA' and EE, 
represented by Eqs. (15)-(19), actually can be described by the kinetic . (36) and (37), 
which were postulated earlier [11]. 

During the development of model (49) and the Eqs. (76) and (79), we avoided 
a nunber of simplifying assumptions used for the and analysis of the previous 
model [11]: the enzyme form EB was considered to have small, but nonetheless some activity 
(s i 0), and the relative Michaelis constants for both forms of the enzyme also had non-zero 
val'~es (though small), i. e., Km -.f:. 0, I -.f:. O. The consequence of this -,oIas that, unlike the 
simpler model [1], the extreme values the variable u: can be calculated only by iteration. 
Howe'Jar, in the condi t ions E Km "" K~ = 0, the asymptotic Eqs. (60), (61), (66), 
(76)-(79) agree with the previous conclusions. 

of the asymptotically calculated values for ula' olb, and Co with the 
obtained by direct integration of ~odel (49) showed that the asymptotic 

were very accurate. Thus, the laborious operation of calculation of the parame-
ters of the auto-oscillatory regime by direct integration can be with the asymp-
totic equations. This substitution is extremely for the behavior of the 
rel~xation biochemical auto-generators in complex multi-contour systems that 
exisI: in real conditions - such as in carbohYdrate energy metabolism [14J. 

~,e system of regulatory relationships, as shown in scha~e (1), has not yet been exper-
imentally observed. However, it should be noted that t~e reaction system in scheme (1) is 
quali:atively equivalent to a enzymatic reaction. 

--, 
/ '\. 

/---, 
/ '\. 

I e o \ 
Sz (85) 

:ts equivalent enzyme Ee is cooperatively activated by substrate S and In 
facL, as shown previously [11], the relationship between the rate of conversion Sl + S2 in 
(l) and the S: (02 = constant) and S2 (° 1 = constant) concentrations are sigmoidal in nature. 
This type of kinetics is characteristic of oligomeric en=~wes which are activated allosteri-
ca~ly by their prodUcts and substrates [7]. 

An analysis of eXperimental data thus far published, a data bank on enzymes and 
metabolic pathways [14, 15], shows that there are more th~~ ten different oligomeric enzy~es 
which are regulated in this way ( • (85)). Among these enzy~es is the well-studied key 
enz)we of the c system of animal tissues, phosphofructokinase (E.C.2.7.1.11), which 
is activated its substrate D-fructose-6-phosphate and by its product D-fructose-1,6-

[19, 20]. Other enzymes of this type include rat liver mitochondrial enzyme 
(E.C.3.5.1.2), which is cooperatively activated by its substrate, L-glutamine 

product, NH3 [21J-
Regulation of the type shown in Eq. (85) apparently plays an important role in gener-

ating the auto-oscillation required for the organization of metabolism in time, and especi-
ally for reducing paraSitic recirculation of substrates in futile (6, 13, 16, 22, 23]. 
Futile cycles include those catalyzed by antagonizing enz)~es: fructose diphosphatase 
(E.E.3.1.3.11) simultaneously with [6, 13, 16, 22, 23], and glutamine 
synthetase (E.C.6.3.1.2) simultaneously with [7J. 

Theoretical analysis of the role of reactions of the kind shown in (84) in the temporal 
organization of cellular metabolism involve very laborious numerical studies of complex 
mathematical models, which consist of non-linear differential equation systems [6, 7, 13, 16, 
22]. The of reaction (85) with the system studied here (scheme (1)), and the 
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possibility of out anal)~ical calculations of the parameters describing the osci1-
l?torv regime systelT: 1 I ~(' be l1Set' as a phenomenological model of reactions of the 
t::;':'2 ~L,J\:;_ ~¥l (85), ;:,.:.- :.::::\.,.,.,. <, ~~~..,o:neric enzymes. This substitution of the s re",>':-
tion (85) for the significantly more complex system (1), which at first sight seems absurd, 
allows numerical studies of the models to be replaced with analytical methods, which radi-
cally simplified the problem. 

In conclusion, it should be noted that apart from reactions of types (1) and (85), 
which are susceptible to the asymptotic equations developed here, there is a great variety 
of equivalent reactions [14], many of which are often met in the metabolism of a variety of 
organisms. Thus, the asymptotic equations developed in [11] and in the present work may 
find wide use in the theoretical analysis of the mechanisms involved in the time organiza-
tion of multi-enz)~e systems. 
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