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A REFINED MATHEMATICAL MODEL OF AN ALMOST IDEAL
BIOCHEMICAL RELAXATION OSCILLATOR BASED ON THE
COVALENT MODIFICATION OF AN ENZYME

I. I. Goryanin, E. E. Sel'kov, uDC . i
and K. I. Serdyuk i

w
~1
~1
)
(n
t

A refined mathematical model (M2) was developed and analyzed; the model describes
E(A.BY }
the generation of relaxation autc-oscillations in the open reaction ~—Si—S:— in ]
which the enzyme E(A, B) is covalently modified by the modifying enzvmes Ep and Eg
in such a way that the active A form of enzyme is converted to the inactive B form
by enzyme Ep, and the B form in reactivated to the A form by enzvme Eg. The MZ
model assumes that the substrate S, and the product S, competitively inhibit the
inactivating enzyme Ej. The system described by MI, like the previcusly described
phenomenological model M1 (E. E. Sel'kov and I. I. Goryanin, Mol. Biol., 206, 1550-
1562 (1986)), was shown to be able to undergo reiaxation auto-oscillation. Lsvmp-
totic equations for the quasi-stationary rate of the reaction S, - S, were derived, ;
taking all enzyme—ligand complexes of enzymes E, Ep, and Ep into consideration,
and asymptotic expressions for the period and amplitude of the relaxation oscilia- ,
tions were also deduced. Good gqualitative and quantitative agreement was demon- :
strated between experimentally measured oscillation periods for the M1 and M2
models and values obtained by numerical integration of the M2 model in conditions
in which the total enzyme concentration E(A, B) was significantly greater than the
total concentrations of enzymes Ep and Eg.

PSRV

Covalent modification of enzymes [1-6] is a significantly more efficient way of contrci-
ling enzyme activity than methods based on equilibrium conformational transitions [7-10].
This explains the fact that the most important key reactions in cell metabolism are regulzted
by covalent enzyme modification [1-6]. Sel'kov and Goryanin [11] investigated a mathema=:cal
model of the flow-through reaction + S, = S, -, which is catalyzed by the enzyme E(£, B),

which is in turn subject to covalent modification by enzymes Ej and Ep according to scheme

(1). E

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences,
Pushchino, Moscow Region 142292. Translated from Molekulyarnaya Biologiva, Vol. 26, No.
pp. 404-417, March-April, 1992. Original article submitted October 17, 199].
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In scheme (1), A is the active form and B is the inactive form of enzyme E(4, B); S,
and S; are the substrate and product respectively of the reaction S, + 3,, and are also inhi-
bitorsz oI the modifying enzyme Ej, inactivating the active A form; Ep is the activating modi-
fring anzyme.

e an a:.most ideal generator of relaxation oscillations, whose period znd amplitude of oscil-
laziem izn be calculated analytically.
“Tne possibility of analytically calculating the parameters of the oscillatory regime in
tzns of Zvpe (1) opens wide vistas in the theoretical analysis of the mechanisms by which
I metabclism is organized in time [12, 13], which up to now has rested solely on very dif-
cunt numerical calculations [14]. Sel'kov and Goryanin [11] derived an asymptotic mathe-
medel of system (1) that permits analytical calculations of its oscillatory regime
- rried cut, and the derivation was based on a series of simplifving assumptions;
DTEmIman clogical expressions for the rates of the reactions catalyzed by enzymes E(A, B),

) were used. However, the conditions required for deducing the rate reactions from
interactions between the enzymes and their ligand remained uninown.

KINETIC MODEL

The complete scheme of all possible interactions of ligands with the three enzymes
E(A, 2%, E4, and Ep in scheme (1) is very complex, and the system can only be analyzed numeri-
cally. dowever, if certain assumptions are made about the mechanisms of the interactions
betwesn the ligands and the enzymes, and if large differences in the concentrations of the
varicus components and the rates of the elementary stages are used, i.e., as usually occur in
real “inchemical systems, the mathematical description of system (1) becomes considerably
impler, and in particular conditions allows analytical investigations to be carried out.
2z purposes of deducing a mathematical model of system (1) we use the following simpli-
umptions on the mechanisms of action of enzymes E(A, B), Ep, and Eg, and on the
the interactions of the ligands with these enzymes.

We assume that enzvme E(A, B) has two different binding centers: a catalytic center to

ing enzvmes Ep and Ep leads to cyclical interconversion of the two forms, i.e., A Z B.
Events in the catalytic center of forms A and B are independent of attachment of enzymes Ej
and Ep, though the forms themselves have different affinities for $, and different catalytic
efficisncies. The mechanism of action of forms A and B can be described as a Michaelis—
Mentan mechanism:

ko,

S|+Aﬁ31A”A+Sz, (2)
# Kon

Si+B=S BB+, (3)
N

where K4y, kél, kyn, and k;z are the rate constants of the elementary stages.

wWe further propose that form B has a low efficiency:

4
Kk, (4)
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Supporting the independence of events in the catalytic and allosteric centers, mechanism (2)
holds both for the free A form and for its complexes with enzyme Ep, and for complexes of
Es with the allosteric inhibitors of this enzyme S; and S,. Similarly, mechanism (3) also
holds for the complex of the B ferm with Ep. Again supporting this independence, the modi-
fying enzvmes act in identical wavs on forms A and B free and bound with §,:

a, Qus
AHE, = AE,ZE 4B, (5)
Sy

AL h s
B"&‘EE:_:‘B’EB":EB‘?‘}\’, (6}
bl
where a+,, bs+,, a4,, and by, are the rate constants of the early stages. Here and subse-
quently, a prime (') is used to designate mixtures of free and 8,-bound molecules. The con-
centrations of such mixtures are given by the sums:

A'=A+SA, A'E,= AE,~S:AE .. (7)

B’=B+$5,8, B'Ey =BEy+SiBEg
We also assume that substrate S. and preduct 8, cf the major reaction $, =+ S, (equa-
tions 2, 3) are allosteric inhibitors of the modifying enzyme Egp, are competitive in rela-
tion to each other, and are non-cempetitive in relation to molecules of A and S,;A attached
to the catalytic center of Es. This type of inhibition is described by a system of chemical
equations:

I
s!-i—E,\f.—:' E.S.
_)!"t
SI+AE, = AES.

[

S:'%EA;:-fE,\Sz.

e

Lo
Sz“‘r‘A'EA/;: A’J.-AS:,
-2

Here, £+, and %24, are rate constanis, and the concentrstion of the mixture is determined by
the sums:

.A;/SA' = A.EA"!"SAEA, A'EASN =AEAS: “?‘Sy.A;EASl, (Q }
A'EAS: Z.L.EAS:'%‘S‘AEAS:,

System (1) is open with respect to S, and S, and closed with respect toall forms of
(A, B), Ea, and Ep. The exchange of S, and S, with the medium occurs with rates:
A T AR TE N S S P (
where v,, is the rate of §, input, V. is the rate of input at 8, = 0, v, is the rzte of ¢
output, V, is the rate of S, input. and k, and k, are the exchange rate constants.

The closed nature of system (1) fer the enzymes means that the total concentratior of
enzymes

Ec=A =B +AE,+BEz+AE,S +AE,S..
Eur=Z.—AE.—~AF,S:+AE,Su
EB::EB___B’EB

[0 L B S

1

J
)]
J

e e

is constant. Here, Eg, Ep,, and Ep. ave the total concentrations of E(4, 1), Ep, and Eg.
For the purposes of deducing the mathematical model, we will, as previously [11], propose
that the reactions of system (1) occur in a perfectlv mixed medium with controlled temperz-
ture and pH.

MATHEMATICAL MODEL

Deduction of a mathematical model for system (1) involves the proposition that the
system contains a hierarchy of concentrations described by the conditions:

$..5:% Eo®» EA(,.EB(% (".’. )




7 an analysis of the extensive experimental data (more than 6000 publications),
cut using the DBEMP enzymes and metabolic pathways data bank [13, 16], this kind of
- is typical for cells in wivo. In fact, the DBEMP data show that the mean concen-
intermediates in cellular metabolism, taken as the mean log of the Michaelis
ant for intermediates, is —3.6 % 1.1, and the mean log enzyme znd modifying enzyme

cons:
{varicus tvpes) concentrations are —7.4 + 1.3 and —8 * 0.8 respectively. The low concen-
trazions of enzymes E(A, B), E,, and Ep in relation to S, and §; allows the analysis to be
sigrificantly simplified: in this case, the concentrations of S, and change much more

slowlv than the concentration of all enzvme forms. Thus, system (1) rapidly establishes a
quasi-statvionary state in which static conditions are established for all enzyme forms, but
not Zor 8. and S5,. In this state, the relationships between the quasi-stationary concentra-
rions of all enzyme molecules (a total of 16 different types) can be determined by four
linear reactions (Egs. 15-18) and one non-linear reaction (Eq. 19). In reaction (19), v4 and

vy are quasi-stationary rates of covalent modification.

kw‘sr (15)

— 54,

= (16)

bag s

AN
Lo
Iy
ry
A
B — _{h
Cn
™

i I i :
o, v8 418,48  Ourag 24 v Tl | g A (1?)

i
Lot Sy Loy Sy
F

3%

(19)

Tre rate of formation of product S, by enzyme form A is given bv the sum of the rates
adation of all types of molecule carrying Si:

W=kao(SIA+SAE, +SIAEAS I +SIAE,LS)). (20)
Similarly, the rate of formation of S5, by form B is given by:
w = Kyy(S1B+SBEg). (21)
The -ate of conversion A - B is:
VA= 24A'E, (22)
and the rate of conversion B - A is:
' (23)

V= by B'Eg

The concentrations of the enzyme—substrate complexes are determined using Egs. (15)
and (16):

S} ' S1 ' (24, 25)
=21 A, §B=—2L1—B8,
has S M TR es

where
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K=k thked/ Koy (26)
K= (K + k) Ky -

iy
are the Michaelis constants for S; of forms A and B.
The independence of the catalytic and allosteric centers allows similar equations for

the concentrations of the remaining complexes of A and B carrying S, in the active center
to be written:

S : (28)
S,AE,= v A'EL,
S : (29)
=-——AE.S,. -
SIAELS, K. +5, ASy
S, AE,S Sl A'E,S
} L .
1 AEAS2 X, <5, A2 (30)

From scheme (17) we find:

i

AE,~AEAS;+AELS: =Eaq , (31)
Ky+A
where
Ka=(a v awy)/ae 32)
is the Michaelis constant for Ej. Considering Eqs. (28)-(30), this gives:
SI A’ £~ -
S;AEA+S;AEAS;+S)AESS; = E e {33
ARAT SIARASITS1ARAS = Ra0 K.+ A
Substituting Egqs. (24) and (33) into the sum {20) gives
W=k,.2 A ” S] - k*,z EAO—;-S—]-"'——L— ‘13-—)
1\m+51 }\m'%sl KA-rA
Following the same argument for reaction {(18), we obtain
Weky Bl sk Epp—ot— B (25)
}\m'r'S: Km+sl KB"’B
For calculating rates vy and vg using reactions (17) and (18), we find
AE, =Exq A ——. (3¢
(KA+A')(1*_L.-_2_]
voKa Ki
BEy =E -, "
B B0 KB+B (J’ !
where
2; i
Kyp=—, K;;=1"—2, KB=M£ (38-40)
{'ri 1«)-2 b+
are the inhibition constants of enzyme Ej and the Michaelis constant of enzyme Eg for B'.
From reaction (19), it folliows that
VR VA, (41)

which, considering Eqs. (22), (23), (36), and (37), gives the relationship between the con-
centrations A' and B':

B A (42)

KB-s-B. ‘ (KA +A‘)(|+S1fK[-I—‘-Sg/K[2}’

where
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s o oAb

r =GB/ boEy,

(43)
relative maximum rate for Ep.

n {11}, an important role in the analvsis of system
function:

‘1) was assigned to the ratio

'
H
i

/3
- (44)
LK K2 KA-:-A/KB'-B

Q'E-l—(l'f—s—}f'-'-%:—'): & .
r

Here, using Zgs. (31) and (37), it is easy to obtain the ratio:
AEQ-F:’\E?&S[‘.-AEAS?_ - A , ’,-' 3 y (45}
BEg Ka+A { Kz+B
which is the ratio of concentrations of By enzyme—substrat
e Ep

e complexes to the concentrations
enzyme—substrate complaxes.

R This ratio in the present model is equivalent to the
ratio in Eq. {44) from the previously published model [11.. Considering Eqs. (33) and (37), Eg.
{11) for the total concentration E, takes the form:
: A 3
Eg=A+B+Exg ~ Ego : (46)
KA. + A z{_g*’?)
To simplifv further analysis, we introduce dimensicnlsss variables and parameters:
S S, A 8
Cr=——, Cp=——, a=—, B=-7
Ky K2 Eg g
W w \._’lEf)
vE W@, W= —, O =, T=-TEet,
K£an B A2 20 Aoy
oW W e K
ks Eg ’ ko Eg S (L‘7)
kK, K K X
‘(::;c ~ I S . ] \"\_-_A?
ki Eg Ka Ki Eq
K ko E Eng K
KB:-ER’ g=—2% g, =20, S3EL . =
0 Ky Eg 0 Ka

where t is the time dimension. Calculating the substituzicns in Egs. {(47), the behavior of
svscan (1) in dimensicnless time v is described bv the following system of mass balance
.8guations:

et h
i?_f.—_v‘ —Klg.——\a,
dl . (48)
A
) uo”“SV—K:G\*\H\,ﬂV
ai ;
where
V==,
’ \
I .
w= Lo+E,
Km_ci\ Ka+Q
c 300
o'z g —rt {5*53 —
Kn+0O Kg+P
[0
o+fB+e, +€ B — =],
K,\*C’. )\'B-r'b

*x is the Greek letter kappa.
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Fig. 1. Relaxation auto-oscillation of the dimen-
sionless substrate concentration of substrate
$.{(oy) and product S,(c,) in reaction (1), 7 is
dimensionless time. Plots were obtained by inte-
gration of model (49) by a modified Celahan
method for the solution of rigid systems [17,
18]. Parameter values were: ¢ = 1073, ¢, =
©.01-107"%, €y = 1.0°107%, ky = 0, vip = 0.5, kp =
Kp = Ky = Km 1.07%, r = 3 Vop = 1, and v, = 1.1.

Here, ¢,, 05, @, and B8 are the dimensionless concentrations of S,, S,, A', and B'; v is
the dimensionless rate of conversion S, - S, catalyzed by enzyme E(A, B); w and «' are ana-
logous parameters for forms A and B separatalv~ vip and v,p are the maximum rates of S, and
S, input; x; and «, are rate constants for the metabolism of S, and 5,3 xp, Km, kg, and Kp
are dxmen31onless Michaelis constants for A, B, Ep., and Ep; € is the relative activity of
form B; €4 and ¢p are the relative concentrations of the modifying enzymes Ep and Egx; and ¢,
is the relative inhibition constant of Ep by S,. If we consider that in model (48) the rel

tive concentrations of enzymes Ep and Ep can be made very small (ep, g - 0), then it takes
the form:

.d_g_l__\,.g‘—-tclc'l—\’. gl o
dr | (585
|
dG,_ =v-¥a 02 +*V3m,"
dt ¥
where
fe} [6)
vz et = g {1~ ]
xn'*cl Km';-otl
- - (I‘ =Q

Finally, neglecting the low activity of form B (e » 0) leads (Eq. (49)) to the previousivy
studied phenomenological model [11].

APPROXIMATION EQUATIONS FOR THE
AMPLITUDES OF RELAXATION OSCILLATIONS

-We will consider model (49) in conditions in which parameters ky, xp, «p, €, and €, are
small. In these conditions this model can generate almost ideal relaxation of the ospina—
tion of variable o, and sguare-wave oscillations in the fast variable ¢, (Fig. 1). Using

the limiting transition £, - 0, we can bring model (49) to a confluent first order model with
a discontinuous right hand 51de‘
4oy o
Bt v wy01 - o) (50)

in which 5(01) is the guasi-stationary value of the rate of reaction $, - 5., which satis-
fies the system of algebraic eguations:
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Fig. 2. (A) Quasi-stationary hysteretic relationship
between the dimensionless rate of reaction S, -+ S,(7)
and the dimensionless concentration of substrate

S.(g,) (bold line) and the limit cycle C, embracing the
hysteratic part of the plot of V(o,) (thin closed
curve). Arrows show the direction of changes in tinm

T, 0 is the unstable stationary state, the rate of the
source of substrate (bold line). The behavior of <(g,)
was determined by numerical integration of model (4%)
by the Colahan method [17, 18]. Parameters had the
same values as in Fig. 1. (B) Approximation of the
limit cvcle C by the rectangle aa'bb'. The non-linear
parts of entry characteristic V(o,;) (bold line) are
replaced by the cherds b'a and ba' (thin lines). =z and
b are break points, and a' and b' are "slowing" points,
sections aa' and bb' are regions of slow movement, and
sections b'a and a'b are regions of rapid movement.

veZ _e—9 (1-0)=0

Kmn=0} Kat Oy

lre ¢ =0, (51)
K, rl-a (xp-a)l+cy+0s)

V—K:G:-’-Vzm=0.

Relaxation oscilliations in model (50) (Fig. 2), as in the original model (49), arise
because of the hysteresis function v(o;). Such oscillations in the phase plane of variables
(3., 7) correspond to the discontinuous limit cycle C, shown in Fig. 2 (cycle ab'ba'). This
cvcle C embraces the hysteretic part of the plot of V(o,) and has two regions of slow move-
ment (sections a'a and bb') and two regions where discontinuities occur from break points a
(or b) to "slowing" points b' or a'. The amplitude and period of oscillation of the vari-
ables as we go around the cycle C are determined by the coordinates of the break points
(a, b) and the "slowing" points (a', b'). In the general case these points cannot be deter-
mined analytically. However, this type of determination can be carried out when kg and kg
are small.

Using the two previously proposed approximate solutions [11] of the second Eq. (51),
we get

oz 354 foru—0, (52)
1+Xg—¢q
R Tl Ul 7N SN (53)
1-(1+ X, )q

where
q=(01+02+1)/r
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is the ratio function (44), and we obtain a solution for system (51). This requires an
equation equivalent to system (51) to be solved, for each case separately:

(1+0y+02) %

~ K3, G2+ Vome =0 (54)
rl=Xa)=1-01=-03

and ‘
r(l+i§A}-{1+KA)(1+O] *02)
r=(1+¥ 1+ 0y +o,)

~K2 02+ ¥y, =0 (55

for the asymptote o, = 0 and a, = 1 respectively. Here we use the designation of functicns:

K2e= Ka/ S Vame = (Vam T [ 1h, (56-57)
Gy P _
= . 58
h o, 5 (38
o, <
= ————. (58)
f2 ‘Km+0l

Solving the quadratics of Egs. (54) and (55) relative to o¢,, and using the conditions
of multiple roots for these equations, we obtain equations determining the abscissas of the
extreme points a and b of the function v(o,) (Fig. 2):

J—
K-V IrX, (Ka+1 s
Ol = A 2me *?’(KB*I}-l-Z M(. A )‘ (60)
- Ko Xoe
oty L Vome TRy -
1o K+l Ko, V(1+KA}K2¢ (€1

These equations cannot be solved relative to ¢,4 and o,}, since kK, and V,ge are the func-
tions o, = 0, or ¢, = G.y respectively (Egs. (56)-(5%)). However, at small values of k; and
km» equations (60) and (61) can be used, simultaneously with expressions (56)-(59), as iter-
ation formulae for analytical or numerical calculation of the abscissas of ¢, and o,3. In
the limiting conditions x5 = 0 and xp »+ 0, as shown by Egs. (56)-(59),

in:lvﬁ=£~ X3 =Kz, "Zme:"2m+ga {6..)
the right hand sides of (60) and (61) do not bridge with o, and peoint values o,, and oy,

another boundary pair ky ~ 0 and kp = =.

wty

=1 =00 K, TR, Vame™ Vi (£3)
and the right hand sides of Egs. (60) and (61) again give the point values of c,, and c,3,
as found previously [1].

At low values of kg, kg, and ky, iteration of Egs. (60) and (61) converge rapidly, sc =

a

first approximation is adequate for calculation of the roots, having taken a null approxima-
tion of the value:

Vo 1+wvn
Gyg=r=1~—=, gy =r—l—u_zm )
le K, Xa. (64)-(£5)

obtained from Egs. (60) and (61) at ky = kg = kp = € = 0. However, with increases in Ky anc
kp, iterations of Egqs. (6) and especially (61) converge poorly or not at all, and then some
other method must be used te improve the convergence of the iterations (for example, Aitken's

62 process [17]). 1In this case, the analytical expressions for o, and o,}, become too labo-
rious and their use becomes inappropriate. If o, and ¢, are determined, the corresponding
multiple values of o, and ¥ can be determined analytically using the equations:

-

‘ 1 (Ve —x
Cag ::}-{Ly(KB-_-l).-l..).(z—m;j_iz._cla¥‘ (66)
¢
1 ] o
sﬁbz_l_\_[(-r\’zme),, r —i-oph (€7)
- :L Ka, KA‘?‘I

e i et Al i S i e
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=Ko ~Vaimes (68)
5T K102 = Vome- (69)

<l <l

The abscissas of the slowing points a' and b' on the limit cycle C (Fig. 2, A) agree
with the abscissa of the break points. Thus, using the values of ¢,, and o,y already found,
we can use the quadratic Egs. (54) and (55) respectively tc calculate values of o, and the

. =1 -~
ordinates of vy' and vpr:

1 70
Gag = :{(V"me KA~ R /Kzz—r(KBle—l—GID} ( )

1
Gop —:{(I‘V')W*Rb /K2ZTF(KA 1}—1—0‘1“}, (71)
Vo = K202~V 2mer (72)
V= K20 —Vame (73)

where

Ry=\(vapme~1+%2C1) ~4RW 5Ky, (74)
R, = V(=Vame T Ka=K2 L) =Ky, (Ka(l =010) T V2L (75)

Ci= 140 ,~rK, C2=rkg-1-0y,
KaT LK, xa=1+xa

The amplitudes of oscillations of the variables are determined as the <ifference between
their extreme values:

Ae =6,,-0

76

Ag. =G =0Cng, E77%
A= V=V, =Ky A

: p=Ve T Ky Ag, (78)

EQUATIONS FOR THE PERIOD OF RELAXATION OSCILLATION

Approximating the region of slow movement on the limit cvcle C (Fiz. 2) with chords ab'
and ba', we obtain expressions for the period of oscillatien:

. . 4T
tozlnijclh'(41"vhu)/31LBIfcw‘+(A:—th)/Bz B:g. (79)
{{O1a ={A ~Vim)/Bi | ~{A1=Vime )/B2 '
where -
Bi= Y2y, By=—flls i
G5 ~Ojg Ol ~

Ay = {’_' - B|C;U. A‘_‘ = \.,’.,,- - Bjc‘h,

At small values of xp, xp, and £,, Eq. (79) gives the period T, with an error of a few
percent (Table 1).

In the important special case of an irreversible source of S;, in which Ky = 0 approx1—
mating the regions of slow movement of characteristic v(o,) with sectors V=79,; and Vv = Uy
(01.S01<0),) leads to a simpler equation for the period:

Ag, Ay (80)

v ({Jb - Vlm)(vlm - \—/a') '

This equation is further simplified in the limiting conditions in which «xp, kg, xp > O:
1

TO:KZ(L+E—VhHXth—E)' (81)

Transforming to dimensional values, we obtain:
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TABLE 1. Comparison cf the Extreme Points of the Variable o, and
the Period of Auto-Oscillation in Model (49) Obtained by Numerical
Integration and by Analytical Calculation

i Numerical integration .- Calculated by asymptotic | pejative
;ii‘ja;egir; of model (49) | Egs. (e4), (85), and (79) | epror in
k2 ! Simax [ Timm ToN S Sk e | To’ %
i1 1.081 0.174 3.637 1.080 0.187 3.606 —0.8
1.2 . 158 0.326 3.342 1.156 0,339 3.404 — 1.1
1.3 1.224 0.454 3.093 1.221 0.467 3.049 —1.4
1.4 1.280 0.563 2.880 1.276 0.576 2.831 —1L.7
1.5 1.328 0.658 2.695 1.324 0.671 2641 —2.0
1.6 1.371 0.74] 2.535 1,366 0,754 1478 —2.4
1.7 1.409 0.815 2.393 1.403 0.828 2329 —2.7
1.8 1.442 0.880 2.268 1.436 0.893 2199 —3.1
1.9 1.472 0.938 2.156 1.465 0.951 2.083 —~3.4

Notes. Numerical integration of model (49) was carried out using
the more detailed model (84) for calculation purposes. Integration
was carried out using the Colahan method to the fourth order of
precision [17, 18] with a step error of 107%, Parameter values
were: € = 1073, g, = 9.01-107%, g4 = 1.0-107%, k;, = 0, v, = 0.5,

KA:KB=Km=KI;1=1'O_5’ r=3’ and \)Zm:l'

To = N K“ ’ N (82)
- | k2 WY /\’+‘_>f}
k’)Aiz T e
- k+2 v 14 k+2)
where V = ky,E,, which is the maximum rate of form A, and
-19—2—<I/i <1+ (83)
+2 +2

EVALUATION OF THE ERROR OF THE ASYMPTOTIC EQUATIONS

Control calculations were performed to evaluate the error with which the asymptotic
Egs. (76)-(79) estimate the amplitude and period of oscillation of the variables in model
(49). TFor this purposs the hybrid model (49), including both differential and algebraic
equations was replacec with the following third-order model, which is more suitable for

integration:

dC']
—=v{,— X101V,
dr im
do, X ,
€9 =V- 20'2-rV2m, (84)
dt
da 1-a a
53—: -7 .
di wg+l-o (xa+o)(l+o;+o,)
where
c
vz a+e——(1-0) & <<gy <<1.
Km-'—cl ) Km+01

Table 1 shows the extreme values of the variable o, (o,p,y4 and Cimip) and the period of
auto-oscillation 1,y, czlculated by direct integration of model (84) at different values of
parameter k,. For comparison, Table 1 also shows values for o,5, ¢}, and 1, calculated
using the asymptotic Egs. (60), (61), and (79).

Comparison of these values shows that the asymptotic equations allow, at g, €os Kms KA»
and kg « 1, to estimate the parameters of the auto-oscillation regime in system (84) with

very low error levels (on the order of a few percent).




DISCUSSION

Inis report describes the development and analysis ¢f mathematiczl model (49), which
provides a more accurate description of the auto-oscillztory regime in reaction (1), as com-
pared with a previously published phenomenological model [11]. The pravious model [1l] sug-
gested that the kinetics of action of the modifying enzwymes Ey and Ep could be described by
aqguations of type (36) and (37), though the mechanisms of the interactions of Ej and Ep
with ligands, required to satisfy these kinetics, were not identified. In the present
paper, it is shown that the mechanism of elementary interactions of enzymes E, Ej, and Eg,
represented by Eqgs. (15)-(19), actually can be described by the kinetic Egs. (36) and (37),
which were postulated earlier [11].

During the development of model (49) and the asymptotic Eqs. (76) and (79), we avoided
a nunber of simplifying assumptions used for the development and analysis of the previous
model [11]: the enzyme form Ep was considered to have small, but nonetheless some activity
{e¢ # 0), and the relative Michaelis constants for both forms of the enzyme also had non-zero
values (though small), i.e., «y # 0, xy # 0. The consequence of this was that, unlike the
simpler model {1], the extreme values of the variable o, can be calculated only by iteration.
However, in the limiting conditions £ = xy = Ké = 0, the asymptotic Eags. (60), (61), (66),
(76)-(79) agree with the previous conclusions.

This comparison of the asymptotically calculated values for gy, 93}, and 1, with the
corresponding values obtained by direct integration of model (49) showed that the asymptotic
equations were very accurate. Thus, the laborious operation of calculation of the varame-
ters of the auto-oscillatory regime by direct integration can be replaced with the asymp-
totic equations. This substitution is extremely important for analyzing the behavior of the
relaxstion biochemical auto-generators in complex multi-contour regulatory systems that
exist in real conditions — such as in carbohydrate energv metabolism [14].

The svstem of regulatory relationships, as shown in scheme (1), has not yet been exper-
imentally observed. However, it should be noted that the reaction system in scheme (1) is
qualitatively equivalent to z single enzymatic reaction.

eom—

-~y /‘—'\
///' \\ é/ \\
® S— (85)
r

g ——

el

Its equivalent enzyme Eg is cooperatively activated by substrate 5, and product S,. In
ct, as shown previously [11], the relationship between the rate of conversion §, = S, in
) and the S, (v, = constant) and S, (¢, = constant) concentrations are sigmoidal in nature.
is type of kinetics is characteristic of oligomeric enzymes which are activated allosteri-
i1lv by their products and substrates [7].

I R 1)

a
;

h
ca

An analysis of experimental data thus far published, using a data bank on enzymes and
metabelic pathwavs [14, 15], shows that there are more than ten different cligomeric enzymes
vhich are regulated in this way (Eq. (85)). Among these enzymes is the well-studied key
enzyme of the glycolytic system of animal tissues, phosphofructokinase (E.C.2.7.1.11), which
is activated by its substrate D-fructcse-6-phosphate and by its product D-fructose-1,6-
diphosphate [19, 20]. Other enzymes of this type include rat liver mitochondrial enzyme
glutaminase (E.C.3.5.1.2), which is cooperatively activated by its substrate, L-glutamine
and by its product, NH; [21].

Regulation of the type shown in Eg. {85) apparently plays an important role in gener-
ating the auto-oscillation required for the organization of metabolism in time, and especi-
ally for reducing parasitic recirculation of substrates in futile cycles [6, 13, 16, 22, 23].
Futile cycles include those catalyzed by antagonizing enzymes: fructose diphosphatase
(E.E.3.1.3.11) simultaneously with phosphofructockinase (6, 13, 16, 22, 23], and glutamine
synthetase (E.C.6.3.1.2) simultaneously with glutaminase [7].

Theoretical analysis of the role of reactions of the kind shown in (84) in the temporal
organization of cellular metabolism involve very laborious numerical studies of complex
mathematical models, which consist of non-linear differential equation systems [6, 7, 13, 16,
22]. The equivalence of reaction (85) with the system studied here (scheme (1)), and the
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possibility of carrying out analytical calculations of the parameters describing the oscil-
1-torv regime system (1) to he used as a phenomenological model of reactions of the

type showr fm (83), coiolyiol In w..gomeric enzymes. This substitution of the simpie recc-
tion (85) for the significantly more complex system (1), which at first sight seems absurd,
allows numerical studies of the models to be replaced with analytical methods, which radi-
cally simplified the problem.

In conclusion, it should be noted that apart from reactions of types (1) and (85),
which are susceptible to the asymptotic equations developed here, there is a great variety
of equivalent reactions [14], many of which are often met in the metabolism of a variety of
organisms. Thus, the asymptotic equations developed in [11] and in the present work may
find wide use in the theoretical analysis of the mechanisms involved in the time organiza-
tion of multi-enzyme systems.
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